Resource efficiency in the production of cement and concrete

Christoph Müller, VDZ gGmbH, Germany

Resource Initiative Leveraging efficiency to meet India's needs
Thursday, May 23, 2013, 9.30 AM - 5.30 PM
Jacaranda Hall, India Habitat Centre, Lodhi Road, New Delhi

Development of world wide cement consumption

source: VDZ Congress 2009, data: IEA 2008

Development of world wide cement consumption

Use of secondary fuels in Germany

An option for India: 15 -20 % in 2050?

CO₂ per t of cement

GWP and energy use for the production of cement and concrete (average 1996 and 2010)

1 t cement	1996	2010	
Global Warming Potential (GWP)	872	692	kg CO ₂ -Eq.
Primary energy (not renewable)	4355	2451	MJ

1 m ³ concrete (C20/25)	1996	2010	
Global Warming Potential (GWP)	242	191	kg CO ₂ -Eq.
Primary energy (not renewable)	1350	846	MJ

GWP and energy use for the production of cement and concrete (average 1996 and 2010)

1 t cement	1996	2010	- 21 % (GWP)
Global Warming Potential (GWP)	872	692	kg CO ₂ -Eq.
Primary energy (not renewable)	4355	2451	MJ

1 m ³ concrete (C20/25)	1996	2010	- 21 % (GWP)
Global Warming Potential (GWP)	242	191	kg CO ₂ -Eq.
Primary energy (not renewable)	1350	846	MJ

The Worldwide Quantity of GGBS and Fly Ash 2010

Clinker performance

Influences:

- cement content
- cement strength
- content of fines
- $(w/c)_{eq}$ resp. w/(c+F)

with

c = clinker

 $F = fines < 125 \mu m$

Minimum and maximum values of the highlighted area (concrete compressive strength (40 \pm 5) N/mm²)

Compressive strength vs. durability

India vs. Europe: Cement types

sources: CEMBUREAU /Technical Report TR-ECRA-120/2012

India vs. Europe: Cement properties (examples)

Cement/Standard	Grade in MPa	Typical cement fineness in cm ² /g (Blaine) 1)		
		India	Europe	
OPC / CEM I	43 /42.5 53 /52.5	3.000	3,600 4,880	
PSC / CEM III	33 / 32,5 43 / 42,5	3,600 n.a. ²⁾	3,920 4,440	
PPC / CEM II/B-V (W)	33 / 32,5	3,400	4,470	

¹⁾ acc. to VDZ Database

²⁾ not included in BIS (Bureau of Indian Standard)

India vs. Europe: Cement testing (examples)

Standard	Temperture in °C	Test conditions
BIS	27	standard (constant) consistency
EN ****	20	standard (constant) water/cement ratio

- Indian cement standard is adapted to local conditions with respect to market,
 available materials and ambient conditions
- Indian cement producers can grind their cements much more coarsly compared to other world regions and to minimise their electrical power consumption in cement grinding

India vs. Europe: Concrete requirements (examples)

Exposure of	EN 206-1 (DIN 1045-2)			IS 458-2000			
the construction element	min cement content in kg/m ³	max w/c	exposure class	min cement content in kg/m ³	max w/c	exposure class	
Inside	260 (240) ¹⁾	0.65 (0.75)	XC1	300 ²⁾	0.55	mild	
Outside	300 (280) ¹⁾	0.50/0.55 (0.6)	XC4/XF1	300 ²⁾ 320 ²⁾	0.5 0.45	moderate severe	

- 1) acc. to ERMCO statistics average cement content DE: ~ 300 kg/m³
- 2) acc. to Indian experts, in practice mainly three types of concrete exist, containing 330, 400 and 500 kg/m³

Conclusions

- The strategy with regard to resource efficiency in the production of cement and concrete has to be adapted to local conditions with regard to
 - availability of raw materials
 - concrete technology
 - ambient conditions
 - building tradition including quality of the execution
- Further reduction of CO₂ emissions when building with concrete can be reached by use of cements with several main constituents
- Durable concrete structures ensure resource efficiency
- Strength # Durability

Thank you for your kind attention

Dr. Christoph Müller VDZ gGmbH christoph.mueller@vdz-online.de

Recycling rates in Europe, data of EQAR

source: data of EQAR - European Quality Association for Recycling e.V.

Requirements on recycled aggregates (RA) in Europe

		Ger- many	Great Britain	The Nether- lands	Aus-tria	Switzer- land	Nor- way	Den- mark	Bel- gium
Number of RA t	ype	2	2	1	2	2	2	1	1
Particle size [mm]		>2	>4	>4	nrd	nrd	nrd	>4	nrd
	Concrete	0-100	nrd	0-100	nrd	25-100	95-100	nrd	95-100
Fraction (depending on type) [%]	Tile	0-10	0-100	0-10	nrd	0-5	nrd	nrd	nrd
	Asphalt	0-1	0-10	nrd	nrd	0-3	nrd	nrd	nrd
	Other	0-4	0-1	nrd	0-12	0-0,03	0-5	nrd	0-1
Maximum content of RA in exposure class (depending on type) [%]	XC0	45 ¹	100	0-20 ¹	100	100	0-30	100	100
	XC1-4	35-45 ¹	100	0-20 ¹	100	25-100	0-30	100	100
	XF1	25-35 ¹	100	0-20 ¹	100	0-25 ²	nrd	100	nrd
	XF2-4	0-35 ¹	0	0-201	100	0-25 ²	nrd	nrd	nrd

nrd: no requirement determined, 1: related to total aggregates; 2: > 25 % with pretesting

different sources

Recycled aggregates of total aggregate use

Demand for aggregates and use of recycled material

Example for The Netherlands

Demand for aggregates and use of recycled material

Example for The Netherlands

Demand for aggregates and use of recycled material

Example for The Netherlands

Conclusions

- On the basis of several studies and corresponding regulations it can be concluded: concrete can be recycled.
- Different Recycling rates in Europe
 - Paths of use: Small parts in new concrete?
- Amount of recycled materials not enough to meet the demand for aggregates
- CPR: A driving force for potential recycling rates?
- Open question
 - LCA "Concrete recycling" vs. "Re-use in other applications"

Thank you for your kind attention

Dr. Christoph Müller VDZ gGmbH christoph.mueller@vdz-online.de

